
3 C H A P T E R

Electric Flux Density,
Gauss’s Law, and
Divergence

A fter drawing a few of the fields described in the previous chapter and becom-
ing familiar with the concept of the streamlines that show the direction of
the force on a test charge at every point, it is difficult to avoid giving these

lines a physical significance and thinking of them as flux lines. No physical particle
is projected radially outward from the point charge, and there are no steel tentacles
reaching out to attract or repel an unwary test charge, but as soon as the streamlines
are drawn on paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flux that streams away symmetrically from a
point charge and is coincident with the streamlines and to visualize this flux wherever
an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux
density to again solve several of the problems presented in Chapter 2. The work here
turns out to be much easier, and this is due to the extremely symmetrical problems
that we are solving. ■

3.1 ELECTRIC FLUX DENSITY
About 1837, the director of the Royal Society in London, Michael Faraday, became
very interested in static electric fields and the effect of various insulating materials on
these fields. This problem had been bothering him during the past ten years when he
was experimenting in his now-famous work on induced electromotive force, which
we will discuss in Chapter 10. With that subject completed, he had a pair of concentric
metallic spheres constructed, the outer one consisting of two hemispheres that could be
firmly clamped together. He also prepared shells of insulating material (or dielectric
material, or simply dielectric) that would occupy the entire volume between the
concentric spheres. We will immediately use his findings about dielectric materials,
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for we are restricting our attention to fields in free space until Chapter 6. At that time
we will see that the materials he used will be classified as ideal dielectrics.

His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge
on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude to
the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of “displacement” from the inner sphere to the outer which was independent of the
medium, and we now refer to this flux as displacement, displacement flux, or simply
electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge on the
inner sphere induced a correspondingly larger negative charge on the outer sphere,
leading to a direct proportionality between the electric flux and the charge on the inner
sphere. The constant of proportionality is dependent on the system of units involved,
and we are fortunate in our use of SI units, because the constant is unity. If electric
flux is denoted by � (psi) and the total charge on the inner sphere by Q, then for
Faraday’s experiment

� = Q

and the electric flux � is measured in coulombs.
We can obtain more quantitative information by considering an inner sphere of

radius a and an outer sphere of radius b, with charges of Q and −Q, respectively
(Figure 3.1). The paths of electric flux � extending from the inner sphere to the outer
sphere are indicated by the symmetrically distributed streamlines drawn radially from
one sphere to the other.

At the surface of the inner sphere, � coulombs of electric flux are produced by the
charge Q(= �) Cs distributed uniformly over a surface having an area of 4πa2 m2.
The density of the flux at this surface is �/4πa2 or Q/4πa2 C/m2, and this is an
important new quantity.

Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given
the letter D, which was originally chosen because of the alternate names of displace-
ment flux density or displacement density. Electric flux density is more descriptive,
however, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density”
class of vector fields, as opposed to the “force fields” class, which includes the electric
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Figure 3.1 The electric flux in the region between a
pair of charged concentric spheres. The direction and
magnitude of D are not functions of the dielectric
between the spheres.

field intensity E. The direction of D at a point is the direction of the flux lines at that
point, and the magnitude is given by the number of flux lines crossing a surface normal
to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction
and has a value of

D
∣∣∣∣
r=a

= Q

4πa2
ar (inner sphere)

D
∣∣∣∣
r=b

= Q

4πb2
ar (outer sphere)

and at a radial distance r , where a ≤ r ≤ b,

D = Q

4πr2
ar

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at a
point r meters from the point charge is still given by

D = Q

4πr2
ar (1)

for Q lines of flux are symmetrically directed outward from the point and pass through
an imaginary spherical surface of area 4πr2.

This result should be compared with Section 2.2, Eq. (9), the radial electric field
intensity of a point charge in free space,

E = Q

4πε0r2
ar
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In free space, therefore,

D = ε0E (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of
a point charge. For a general volume charge distribution in free space,

E =
∫

vol

ρνdv

4πε0 R2
aR (free space only) (3)

where this relationship was developed from the field of a single point charge. In a
similar manner, (1) leads to

D =
∫

vol

ρνdv

4πR2
aR (4)

and (2) is therefore true for any free-space charge configuration; we will consider (2)
as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out now
that, for a point charge embedded in an infinite ideal dielectric medium, Faraday’s
results show that (1) is still applicable, and thus so is (4). Equation (3) is not applicable,
however, and so the relationship between D and E will be slightly more complicated
than (2).

Because D is directly proportional to E in free space, it does not seem that it
should really be necessary to introduce a new symbol. We do so for a few reasons.
First, D is associated with the flux concept, which is an important new idea. Second,
the D fields we obtain will be a little simpler than the corresponding E fields, because
ε0 does not appear.

D3.1. Given a 60-µC point charge located at the origin, find the total electric
flux passing through: (a) that portion of the sphere r = 26 cm bounded by
0 < θ <

π

2
and 0 < φ <

π

2
; (b) the closed surface defined by ρ = 26 cm and

z = ±26 cm; (c) the plane z = 26 cm.

Ans. 7.5 µC; 60 µC; 30 µC

D3.2. Calculate D in rectangular coordinates at point P(2, −3, 6) produced
by: (a) a point charge Q A = 55 mC at Q(−2, 3, −6); (b) a uniform line
charge ρL B = 20 mC/m on the x axis; (c) a uniform surface charge density
ρSC = 120 µC/m2 on the plane z = −5 m.

Ans. 6.38ax − 9.57ay + 19.14az µC/m2; −212ay + 424az µC/m2; 60az µC/m2
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3.2 GAUSS’S LAW
The results of Faraday’s experiments with the concentric spheres could be summed up
as an experimental law by stating that the electric flux passing through any imaginary
spherical surface lying between the two conducting spheres is equal to the charge
enclosed within that imaginary surface. This enclosed charge is distributed on the
surface of the inner sphere, or it might be concentrated as a point charge at the center
of the imaginary sphere. However, because one coulomb of electric flux is produced
by one coulomb of charge, the inner conductor might just as well have been a cube or a
brass door key and the total induced charge on the outer sphere would still be the same.
Certainly the flux density would change from its previous symmetrical distribution
to some unknown configuration, but +Q coulombs on any inner conductor would
produce an induced charge of −Q coulombs on the surrounding sphere. Going one
step further, we could now replace the two outer hemispheres by an empty (but
completely closed) soup can. Q coulombs on the brass door key would produce
� = Q lines of electric flux and would induce −Q coulombs on the tin can.1

These generalizations of Faraday’s experiment lead to the following statement,
which is known as Gauss’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has
ever produced, was actually not in stating the law as we have, but in providing a
mathematical form for this statement, which we will now obtain.

Let us imagine a distribution of charge, shown as a cloud of point charges in
Figure 3.2, surrounded by a closed surface of any shape. The closed surface may be
the surface of some real material, but more generally it is any closed surface we wish
to visualize. If the total charge is Q, then Q coulombs of electric flux will pass through
the enclosing surface. At every point on the surface the electric-flux-density vector
D will have some value DS , where the subscript S merely reminds us that D must be
evaluated at the surface, and DS will in general vary in magnitude and direction from
one point on the surface to another.

We must now consider the nature of an incremental element of the surface. An
incremental element of area �S is very nearly a portion of a plane surface, and
the complete description of this surface element requires not only a statement of its
magnitude �S but also of its orientation in space. In other words, the incremental
surface element is a vector quantity. The only unique direction that may be associated
with �S is the direction of the normal to that plane which is tangent to the surface
at the point in question. There are, of course, two such normals, and the ambiguity
is removed by specifying the outward normal whenever the surface is closed and
“outward” has a specific meaning.

1 If it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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Figure 3.2 The electric flux density DS at P arising
from charge Q. The total flux passing through �S is
DS · �S.

At any point P , consider an incremental element of surface �S and let DS make
an angle θ with �S, as shown in Figure 3.2. The flux crossing �S is then the product
of the normal component of DS and �S,

�� = flux crossing �S = DS,norm�S = DS cos θ�S = DS · �S

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-

ferential contributions crossing each surface element �S,

� =
∫

d� =
∮

closed
surface

DS · dS

The resultant integral is a closed surface integral, and since the surface element
dS always involves the differentials of two coordinates, such as dx dy, ρ dφ dρ,
or r2 sin θ dθ dφ, the integral is a double integral. Usually only one integral sign is
used for brevity, and we will always place an S below the integral sign to indicate
a surface integral, although this is not actually necessary, as the differential dS is
automatically the signal for a surface integral. One last convention is to place a small
circle on the integral sign itself to indicate that the integration is to be performed over
a closed surface. Such a surface is often called a gaussian surface. We then have the
mathematical formulation of Gauss’s law,

� =
∮

S
DS · dS = charge enclosed = Q (5)

The charge enclosed might be several point charges, in which case

Q = 	Qn

or a line charge,

Q =
∫

ρL dL
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or a surface charge,

Q =
∫

S
ρSdS (not necessarily a closed surface)

or a volume charge distribution,

Q =
∫

vol
ρν dv

The last form is usually used, and we should agree now that it represents any or
all of the other forms. With this understanding, Gauss’s law may be written in terms
of the charge distribution as

∮

S
DS · dS =

∫

vol
ρν dv (6)

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

EXAMPLE 3.1

To illustrate the application of Gauss’s law, let us check the results of Faraday’s
experiment by placing a point charge Q at the origin of a spherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. We have, as before,

D = Q

4πr2
ar

At the surface of the sphere,

DS = Q

4πa2
ar

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,

d S = r2 sin θ dθ dφ = a2 sin θ dθ dφ

or

dS = a2 sin θ dθ dφ ar

The integrand is

DS · dS = Q

4πa2
a2 sin θ dθ dφar · ar = Q

4π
sin θ dθ dφ

leading to the closed surface integral
∫ φ=2π

φ=0

∫ θ=π

θ=φ

Q

4π
sin θ dθ dφ
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Figure 3.3 Applying Gauss’s law to
the field of a point charge Q on a
spherical closed surface of radius a. The
electric flux density D is everywhere
normal to the spherical surface and has
a constant magnitude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried
over the entire surface of the sphere once.2 Integrating gives∫ 2π

0

Q

4π

( −cos θ
)π

0 dφ =
∫ 2π

0

Q

2π
dφ = Q

and we obtain a result showing that Q coulombs of electric flux are crossing the
surface, as we should since the enclosed charge is Q coulombs.

D3.3. Given the electric flux density, D = 0.3r2ar nC/m2 in free space:
(a) find E at point P(r = 2, θ = 25◦, φ = 90◦); (b) find the total charge
within the sphere r = 3; (c) find the total electric flux leaving the sphere r = 4.

Ans. 135.5ar V/m; 305 nC; 965 nC

D3.4. Calculate the total electric flux leaving the cubical surface formed by the
six planes x, y, z = ±5 if the charge distribution is: (a) two point charges, 0.1 µC
at (1, −2, 3) and 1

7 µC at (−1, 2, −2); (b) a uniform line charge of π µC/m at
x = −2, y = 3; (c) a uniform surface charge of 0.1 µC/m2 on the plane y = 3x .

Ans. 0.243 µC; 31.4 µC; 10.54 µC

2 Note that if θ and φ both cover the range from 0 to 2π , the spherical surface is covered twice.
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss’s law,

Q =
∮

S
DS · dS

to determine DS if the charge distribution is known. This is an example of an integral
equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we are able to choose a closed surface which satisfies two
conditions:

1. DS is everywhere either normal or tangential to the closed surface, so that
DS · dS becomes either DSdS or zero, respectively.

2. On that portion of the closed surface for which DS · dS is not zero, DS =
constant.

This allows us to replace the dot product with the product of the scalars DS and
d S and then to bring DS outside the integral sign. The remaining integral is then∫

S d S over that portion of the closed surface which DS crosses normally, and this is
simply the area of this section of that surface. Only a knowledge of the symmetry of
the problem enables us to choose such a closed surface.

Let us again consider a point charge Q at the origin of a spherical coordinate
system and decide on a suitable closed surface which will meet the two requirements
previously listed. The surface in question is obviously a spherical surface, centered
at the origin and of any radius r . DS is everywhere normal to the surface; DS has the
same value at all points on the surface.

Then we have, in order,

Q =
∮

S
DS · dS =

∮

sph
DSdS

= DS

∮

sph
d S = DS

∫ φ=2π

φ=0

∫ θ=π

θ=0
r2 sin θ dθ dφ

= 4πr2 DS

and hence

DS = Q

4πr2

Because r may have any value and because DS is directed radially outward,

D = Q

4πr2
ar E = Q

4πε0r2
ar
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which agrees with the results of Chapter 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and that
leaves the inverse-square-law relationship as the only check obtained from Gauss’s
law. The example does, however, serve to illustrate a method which we may apply
to other problems, including several to which Coulomb’s law is almost incapable of
supplying an answer.

Are there any other surfaces which would have satisfied our two conditions? The
student should determine that such simple surfaces as a cube or a cylinder do not meet
the requirements.

As a second example, let us reconsider the uniform line charge distribution ρL

lying along the z axis and extending from −∞ to +∞. We must first know the
symmetry of the field, and we may consider this knowledge complete when the
answers to these two questions are known:

1. With which coodinates does the field vary (or of what variables is D a function)?

2. Which components of D are present?

In using Gauss’s law, it is not a question of using symmetry to simplify the
solution, for the application of Gauss’s law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss’s law to obtain a solution. The
preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only
the radial component of D is present, or

D = Dρaρ

and this component is a function of ρ only.

Dρ = f (ρ)

The choice of a closed surface is now simple, for a cylindrical surface is the only
surface to which Dρ is everywhere normal, and it may be closed by plane surfaces
normal to the z axis. A closed right circular cylinder of radius ρ extending from z = 0
to z = L is shown in Figure 3.4.

We apply Gauss’s law,

Q =
∮

cyl
DS · dS = DS

∫

sides
d S + 0

∫

top
d S + 0

∫

bottom
dS

= DS

∫ L

z=0

∫ 2π

φ=0
ρ dφ dz = DS2πρL

and obtain

DS = Dρ = Q

2πρL

In terms of the charge density ρL , the total charge enclosed is

Q = ρL L
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Figure 3.4 The gaussian
surface for an infinite uniform line
charge is a right circular cylinder of
length L and radius ρ. D is
constant in magnitude and
everywhere perpendicular to the
cylindrical surface; D is parallel to
the end faces.

giving

Dρ = ρL

2πρ

or

Eρ = ρL

2πε0ρ

Comparing with Section 2.4, Eq. (16), shows that the correct result has been
obtained and with much less work. Once the appropriate surface has been chosen, the
integration usually amounts only to writing down the area of the surface at which D
is normal.

The problem of a coaxial cable is almost identical with that of the line charge and
is an example that is extremely difficult to solve from the standpoint of Coulomb’s
law. Suppose that we have two coaxial cylindrical conductors, the inner of radius a
and the outer of radius b, each infinite in extent (Figure 3.5). We will assume a charge
distribution of ρS on the outer surface of the inner conductor.

Symmetry considerations show us that only the Dρ component is present and
that it can be a function only of ρ. A right circular cylinder of length L and radius ρ,
where a < ρ < b, is necessarily chosen as the gaussian surface, and we quickly have

Q = DS2πρL
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Figure 3.5 The two coaxial
cylindrical conductors forming a
coaxial cable provide an electric
flux density within the cylinders,
given by Dρ = aρS/ρ.

The total charge on a length L of the inner conductor is

Q =
∫ L

z=0

∫ 2π

φ=0
ρSa dφ dz = 2πaLρS

from which we have

DS = aρS

ρ
D = aρS

ρ
aρ (a < ρ < b)

This result might be expressed in terms of charge per unit length because the inner
conductor has 2πaρS coulombs on a meter length, and hence, letting ρL = 2πaρS ,

D = ρL

2πρ
aρ

and the solution has a form identical with that of the infinite line charge.
Because every line of electric flux starting from the charge on the inner cylinder

must terminate on a negative charge on the inner surface of the outer cylinder, the
total charge on that surface must be

Qouter cyl = −2πaLρS,inner cyl

and the surface charge on the outer cylinder is found as

2πbLρS,outer cyl = −2πaLρS,inner cyl

or

ρS,outer cyl = −a

b
ρS,inner cyl

What would happen if we should use a cylinder of radius ρ, ρ > b, for the
gaussian surface? The total charge enclosed would then be zero, for there are equal
and opposite charges on each conducting cylinder. Hence

0 = DS2πρL (ρ > b)

DS = 0 (ρ > b)
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An identical result would be obtained for ρ < a. Thus the coaxial cable or
capacitor has no external field (we have proved that the outer conductor is a “shield”),
and there is no field within the center conductor.

Our result is also useful for a finite length of coaxial cable, open at both ends, pro-
vided the length L is many times greater than the radius b so that the nonsymmetrical
conditions at the two ends do not appreciably affect the solution. Such a device is
also termed a coaxial capacitor. Both the coaxial cable and the coaxial capacitor will
appear frequently in the work that follows.

EXAMPLE 3.2

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an
outer radius of 4 mm. The space between conductors is assumed to be filled with air.
The total charge on the inner conductor is 30 nC. We wish to know the charge density
on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

ρS,inner cyl = Qinner cyl

2πaL
= 30 × 10−9

2π (10−3)(0.5)
= 9.55 µC/m2

The negative charge density on the inner surface of the outer cylinder is

ρS,outer cyl = Qouter cyl

2πbL
= −30 × 10−9

2π (4 × 10−3)(0.5)
= −2.39 µC/m2

The internal fields may therefore be calculated easily:

Dρ = aρS

ρ
= 10−3(9.55 × 10−6)

ρ
= 9.55

ρ
nC/m2

and

Eρ = Dρ

ε0
= 9.55 × 10−9

8.854 × 10−12ρ
= 1079

ρ
V/m

Both of these expressions apply to the region where 1 < ρ < 4 mm. For ρ < 1 mm
or ρ > 4 mm, E and D are zero.

D3.5. A point charge of 0.25 µC is located at r = 0, and uniform surface
charge densities are located as follows: 2 mC/m2 at r = 1 cm, and −0.6 mC/m2

at r = 1.8 cm. Calculate D at: (a) r = 0.5 cm; (b) r = 1.5 cm; (c) r = 2.5 cm.
(d) What uniform surface charge density should be established at r = 3 cm to
cause D = 0 at r = 3.5 cm?

Ans. 796ar µC/m2; 977ar µC/m2; 40.8ar µC/m2; −28.3 µC/m2
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3.4 APPLICATION OF GAUSS’S LAW:
DIFFERENTIAL VOLUME ELEMENT

We are now going to apply the methods of Gauss’s law to a slightly different type
of problem—one that does not possess any symmetry at all. At first glance, it might
seem that our case is hopeless, for without symmetry, a simple gaussian surface cannot
be chosen such that the normal component of D is constant or zero everywhere on
the surface. Without such a surface, the integral cannot be evaluated. There is only
one way to circumvent these difficulties and that is to choose such a very small
closed surface that D is almost constant over the surface, and the small change in
D may be adequately represented by using the first two terms of the Taylor’s-series
expansion for D. The result will become more nearly correct as the volume enclosed
by the gaussian surface decreases, and we intend eventually to allow this volume to
approach zero.

This example also differs from the preceding ones in that we will not obtain the
value of D as our answer but will instead receive some extremely valuable information
about the way D varies in the region of our small surface. This leads directly to one
of Maxwell’s four equations, which are basic to all electromagnetic theory.

Let us consider any point P , shown in Figure 3.6, located by a rectangular
coordinate system. The value of D at the point P may be expressed in rectangular
components, D0 = Dx0ax + Dy0ay + Dz0az . We choose as our closed surface the
small rectangular box, centered at P , having sides of lengths �x , �y, and �z, and
apply Gauss’s law,

∮

S
D · dS = Q

In order to evaluate the integral over the closed surface, the integral must be
broken up into six integrals, one over each face,∮

S
D · dS =

∫

front
+

∫

back
+

∫

left
+

∫

right
+

∫

top
+

∫

bottom

Consider the first of these in detail. Because the surface element is very small, D
is essentially constant (over this portion of the entire closed surface) and∫

front
=̇ Dfront · �Sfront

=̇ Dfront · �y �z ax

=̇ Dx,front�y �z

where we have only to approximate the value of Dx at this front face. The front face
is at a distance of �x/2 from P , and hence

Dx,front =̇ Dx0 + �x

2
× rate of change of Dx with x

=̇ Dx0 + �x

2

∂Dx

∂x
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Figure 3.6 A differential-sized gaussian surface about
the point P is used to investigate the space rate of
change of D in the neighborhood of P.

where Dx0 is the value of Dx at P , and where a partial derivative must be used to
express the rate of change of Dx with x , as Dx in general also varies with y and z.
This expression could have been obtained more formally by using the constant term
and the term involving the first derivative in the Taylor’s-series expansion for Dx in
the neighborhood of P.

We now have ∫

front
=̇

(
Dx0 + �x

2

∂Dx

∂x

)
�y �z

Consider now the integral over the back surface,
∫

back
=̇ Dback · �Sback

=̇ Dback · (−�y �z ax )

=̇ −Dx,back�y �z

and

Dx,back =̇ Dx0 − �x

2

∂Dx

∂x

giving
∫

back
=̇

(
−Dx0 + �x

2

∂Dx

∂x

)
�y �z

If we combine these two integrals, we have
∫

front
+

∫

back
=̇ ∂Dx

∂x
�x �y �z
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By exactly the same process we find that

∫

right
+

∫

left
=̇ ∂Dy

∂y
�x �y �z

and

∫

top
+

∫

bottom
=̇ ∂Dz

∂z
�x �y �z

and these results may be collected to yield

∮

S
D · dS =̇

(
∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
�x �y �z

or

∮

S
D · dS = Q =̇

(
∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
�ν (7)

The expression is an approximation which becomes better as �ν becomes
smaller, and in the following section we shall let the volume �ν approach zero.
For the moment, we have applied Gauss’s law to the closed surface surrounding the
volume element �ν and have as a result the approximation (7) stating that

Charge enclosed in volume �ν =̇
(

∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
× volume �ν (8)

EXAMPLE 3.3

Find an approximate value for the total charge enclosed in an incremental volume of
10−9 m3 located at the origin, if D = e−x sin y ax − e−x cos y ay + 2zaz C/m2.

Solution. We first evaluate the three partial derivatives in (8):

∂Dx

∂x
= −e−x sin y

∂Dy

∂y
= e−x sin y

∂Dz

∂z
= 2

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2�ν. If
�ν is 10−9 m3, then we have enclosed about 2 nC.
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D3.6. In free space, let D = 8xyz4ax +4x2z4ay +16x2 yz3az pC/m2. (a) Find
the total electric flux passing through the rectangular surface z = 2, 0 <

x < 2, 1 < y < 3, in the az direction. (b) Find E at P(2, −1, 3). (c) Find
an approximate value for the total charge contained in an incremental sphere
located at P(2, −1, 3) and having a volume of 10−12 m3.

Ans. 1365 pC; −146.4ax + 146.4ay − 195.2azV/m; −2.38 × 10−21 C

3.5 DIVERGENCE AND MAXWELL’S
FIRST EQUATION

We will now obtain an exact relationship from (7), by allowing the volume element
�ν to shrink to zero. We write this equation as

(
∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
= lim

�ν→0

∮
S D · dS
�ν

= lim
�ν→0

Q

�ν
= ρν (9)

in which the charge density, ρν , is identified in the second equality.
The methods of the previous section could have been used on any vector A to

find
∮

S A · dS for a small closed surface, leading to
(

∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
= lim

�ν→0

∮
S A · dS
�ν

(10)

where A could represent velocity, temperature gradient, force, or any other vector
field.

This operation appeared so many times in physical investigations in the last cen-
tury that it received a descriptive name, divergence. The divergence of A is defined as

Divergence of A = div A = lim
�ν→0

∮
S A · dS
�ν

(11)

and is usually abbreviated div A. The physical interpretation of the divergence of a
vector is obtained by describing carefully the operations implied by the right-hand
side of (11), where we shall consider A to be a member of the flux-density family of
vectors in order to aid the physical interpretation.

The divergence of the vector flux density A is the outflow of flux from a small closed surface
per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often
useful in obtaining qualitative information about the divergence of a vector field
without resorting to a mathematical investigation. For instance, let us consider the
divergence of the velocity of water in a bathtub after the drain has been opened. The
net outflow of water through any closed surface lying entirely within the water must
be zero, for water is essentially incompressible, and the water entering and leaving
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different regions of the closed surface must be equal. Hence the divergence of this
velocity is zero.

If, however, we consider the velocity of the air in a tire that has just been punc-
tured by a nail, we realize that the air is expanding as the pressure drops, and that
consequently there is a net outflow from any closed surface lying within the tire. The
divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector
quantity at that point. Similarly, a negative divergence indicates a sink. Because the
divergence of the water velocity above is zero, no source or sink exists.3 The expanding
air, however, produces a positive divergence of the velocity, and each interior point
may be considered a source.

Writing (9) with our new term, we have

div D =
(

∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

)
(rectangular) (12)

This expression is again of a form that does not involve the charge density. It is the
result of applying the definition of divergence (11) to a differential volume element
in rectangular coordinates.

If a differential volume unit ρ dρ dφ dz in cylindrical coordinates, or r2 sin θ dr
dθ dφ in spherical coordinates, had been chosen, expressions for divergence involving
the components of the vector in the particular coordinate system and involving partial
derivatives with respect to the variables of that system would have been obtained.
These expressions are obtained in Appendix A and are given here for convenience:

div D = 1

ρ

∂

∂ρ
(ρDρ) + 1

ρ

∂Dφ

∂φ
+ ∂Dz

∂z
(cylindrical) (13)

div D = 1

r2

∂

∂r
(r2 Dr ) + 1

r sin θ

∂

∂θ
(sin θ Dθ ) + 1

r sin θ

∂Dφ

∂φ
(spherical) (14)

These relationships are also shown inside the back cover for easy reference.
It should be noted that the divergence is an operation which is performed on a

vector, but that the result is a scalar. We should recall that, in a somewhat similar way,
the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first
time to impart a vector quality to the operation by scattering unit vectors around in

3 Having chosen a differential element of volume within the water, the gradual decrease in water level
with time will eventually cause the volume element to lie above the surface of the water. At the instant
the surface of the water intersects the volume element, the divergence is positive and the small volume
is a source. This complication is avoided above by specifying an integral point.
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the partial derivatives. Divergence merely tells us how much flux is leaving a small
volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at
the end of Section 3.4.

EXAMPLE 3.4

Find div D at the origin if D = e−x sin y ax − e−x cos y ay + 2zaz .

Solution. We use (10) to obtain

div D = ∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

= −e−x sin y + e−x sin y + 2 = 2

The value is the constant 2, regardless of location.
If the units of D are C/m2, then the units of div D are C/m3. This is a volume charge
density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the
point specified: (a) D = (2xyz − y2)ax + (x2z − 2xy)ay + x2 yazC/m2 at
PA(2, 3, −1); (b) D = 2ρz2 sin2 φ aρ + ρz2 sin 2φ aφ + 2ρ2z sin2 φ azC/m2 at
PB(ρ = 2, φ = 110◦, z = −1); (c) D = 2r sin θ cos φ ar + r cos θ cos φ aθ −
r sin φ aφ C/m2 at PC (r = 1.5, θ = 30◦, φ = 50◦).

Ans. −10.00; 9.06; 1.29

Finally, we can combine Eqs. (9) and (12) and form the relation between electric
flux density and charge density:

div D = ρν (15)

This is the first of Maxwell’s four equations as they apply to electrostatics and
steady magnetic fields, and it states that the electric flux per unit volume leaving a
vanishingly small volume unit is exactly equal to the volume charge density there.
This equation is aptly called the point form of Gauss’s law. Gauss’s law relates the flux
leaving any closed surface to the charge enclosed, and Maxwell’s first equation makes
an identical statement on a per-unit-volume basis for a vanishingly small volume, or
at a point. Because the divergence may be expressed as the sum of three partial
derivatives, Maxwell’s first equation is also described as the differential-equation
form of Gauss’s law, and conversely, Gauss’s law is recognized as the integral form
of Maxwell’s first equation.

As a specific illustration, let us consider the divergence of D in the region about
a point charge Q located at the origin. We have the field

D = Q

4πr2
ar
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and use (14), the expression for divergence in spherical coordinates:

div D = 1

r2

∂

∂r
(r2 Dr ) + 1

r sin θ

∂

∂θ
(Dθ sin θ ) + 1

r sin θ

∂Dφ

∂φ

Because Dθ and Dφ are zero, we have

div D = 1

r2

d

dr

(
r2 Q

4πr2

)
= 0 (if r �= 0)

Thus, ρν = 0 everywhere except at the origin, where it is infinite.
The divergence operation is not limited to electric flux density; it can be applied

to any vector field. We will apply it to several other electromagnetic fields in the
coming chapters.

D3.8. Determine an expression for the volume charge density associated with

each D field: (a) D = 4xy

z
ax + 2x2

z
ay − 2x2 y

z2
az ; (b) D = z sin φ aρ +

z cos φ aφ + ρ sin φ az ; (c) D = sin θ sin φ ar + cos θ sin φ aθ + cos φ aφ.

Ans.
4y

z3
(x2 + z2); 0; 0.

3.6 THE VECTOR OPERATOR ∇
AND THE DIVERGENCE THEOREM

If we remind ourselves again that divergence is an operation on a vector yielding a
scalar result, just as the dot product of two vectors gives a scalar result, it seems possi-
ble that we can find something that may be dotted formally with D to yield the scalar

∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

Obviously, this cannot be accomplished by using a dot product; the process must be
a dot operation.

With this in mind, we define the del operator ∇ as a vector operator,

∇ = ∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az (16)

Similar scalar operators appear in several methods of solving differential equations
where we often let D replace d/dx , D2 replace d2/dx2, and so forth.4 We agree on
defining ∇ that it shall be treated in every way as an ordinary vector with the one
important exception that partial derivatives result instead of products of scalars.

Consider ∇ · D, signifying

∇ · D =
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
· (Dx ax + Dyay + Dzaz)

4 This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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We first consider the dot products of the unit vectors, discarding the six zero terms,
and obtain the result that we recognize as the divergence of D:

∇ · D = ∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z
= div(D)

The use of ∇ · D is much more prevalent than that of div D, although both usages
have their advantages. Writing ∇ · D allows us to obtain simply and quickly the correct
partial derivatives, but only in rectangular coordinates, as we will see. On the other
hand, div D is an excellent reminder of the physical interpretation of divergence.
We shall use the operator notation ∇ · D from now on to indicate the divergence
operation.

The vector operator ∇ is used not only with divergence, but also with several
other very important operations that appear later. One of these is ∇u, where u is any
scalar field, and leads to

∇u =
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
u = ∂u

∂x
ax + ∂u

∂y
ay + ∂u

∂z
az

The ∇ operator does not have a specific form in other coordinate systems. If we
are considering D in cylindrical coordinates, then ∇ · D still indicates the divergence
of D, or

∇ · D = 1

ρ

∂

∂ρ
(ρDρ) + 1

ρ

∂Dφ

∂φ
+ ∂Dz

∂z

where this expression has been taken from Section 3.5. We have no form for ∇ itself
to help us obtain this sum of partial derivatives. This means that ∇u, as yet unnamed
but easily written in rectangular coordinates, cannot be expressed by us at this time
in cylindrical coordinates. Such an expression will be obtained when ∇u is defined
in Chapter 4.

We close our discussion of divergence by presenting a theorem that will be needed
several times in later chapters, the divergence theorem. This theorem applies to any
vector field for which the appropriate partial derivatives exist, although it is easiest
for us to develop it for the electric flux density. We have actually obtained it already
and now have little more to do than point it out and name it, for starting from Gauss’s
law, we have ∮

S
D · dS = Q =

∫

vol
ρνdv =

∫

vol
∇ · D dv

The first and last expressions constitute the divergence theorem,

∮

S
D · dS =

∫

vol
∇ · D dv (17)

which may be stated as follows:

The integral of the normal component of any vector field over a closed surface is equal to
the integral of the divergence of this vector field throughout the volume enclosed by the
closed surface.
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Figure 3.7 The divergence theorem states that the total
flux crossing the closed surface is equal to the integral of
the divergence of the flux density throughout the enclosed
volume. The volume is shown here in cross section.

Again, we emphasize that the divergence theorem is true for any vector field,
although we have obtained it specifically for the electric flux density D, and we will
have occasion later to apply it to several different fields. Its benefits derive from the
fact that it relates a triple integration throughout some volume to a double integration
over the surface of that volume. For example, it is much easier to look for leaks in
a bottle full of some agitated liquid by inspecting the surface than by calculating the
velocity at every internal point.

The divergence theorem becomes obvious physically if we consider a volume ν,
shown in cross section in Figure 3.7, which is surrounded by a closed surface S.
Division of the volume into a number of small compartments of differential size and
consideration of one cell show that the flux diverging from such a cell enters, or
converges on, the adjacent cells unless the cell contains a portion of the outer surface.
In summary, the divergence of the flux density throughout a volume leads, then, to
the same result as determining the net flux crossing the enclosing surface.

EXAMPLE 3.5

Evaluate both sides of the divergence theorem for the field D = 2xyax + x2ay C/m2

and the rectangular parellelepiped formed by the planes x = 0 and 1, y = 0 and 2,
and z = 0 and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the sur-
faces at z = 0 and z = 3, so D · dS = 0 there. For the remaining four surfaces
we have

∮

S
D · dS =

∫ 3

0

∫ 2

0
(D)x=0 · (−dy dz ax ) +

∫ 3

0

∫ 2

0
(D)x=1 · (dy dz ax )

+
∫ 3

0

∫ 1

0
(D)y=0 · (−dx dz ay) +

∫ 3

0

∫ 1

0
(D)y=2 · (dx dz ay)
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= −
∫ 3

0

∫ 2

0
(Dx )x=0dy dz +

∫ 3

0

∫ 2

0
(Dx )x=1dy dz

−
∫ 3

0

∫ 1

0
(Dy)y=0dx dz +

∫ 3

0

∫ 1

0
(Dy)y=2dx dz

However, (Dx )x=0 = 0, and (Dy)y=0 = (Dy)y=2, which leaves only
∮

S
D · dS =

∫ 3

0

∫ 2

0
(Dx )x=1dy dz =

∫ 3

0

∫ 2

0
2y dy dz

=
∫ 3

0
4 dz = 12

Since

∇ · D = ∂

∂x
(2xy) + ∂

∂y
(x2) = 2y

the volume integral becomes
∫

vol
∇ · D dv =

∫ 3

0

∫ 2

0

∫ 1

0
2y dx dy dz =

∫ 3

0

∫ 2

0
2y dy dz

=
∫ 3

0
4 dz = 12

and the check is accomplished. Remembering Gauss’s law, we see that we have also
determined that a total charge of 12 C lies within this parallelepiped.

D3.9. Given the field D = 6ρ sin 1
2φ aρ +1.5ρ cos 1

2φ aφ C/m2, evaluate both
sides of the divergence theorem for the region bounded by ρ = 2, φ = 0,
φ = π , z = 0, and z = 5.

Ans. 225; 225
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CHAPTER 3 PROBLEMS
3.1 Suppose that the Faraday concentric sphere experiment is performed in free

space using a central charge at the origin, Q1, and with hemispheres of radius
a. A second charge Q2 (this time a point charge) is located at distance R
from Q1, where R >> a. (a) What is the force on the point charge before the
hemispheres are assembled around Q1? (b) What is the force on the point
charge after the hemispheres are assembled but before they are discharged?
(c) What is the force on the point charge after the hemispheres are assembled
and after they are discharged? (d) Qualitatively, describe what happens as Q2

is moved toward the sphere assembly to the extent that the condition R >> a
is no longer valid.

3.2 An electric field in free space is E = (5z2/ε0) âz V/m. Find the total charge
contained within a cube, centered at the origin, of 4-m side length, in which
all sides are parallel to coordinate axes (and therefore each side intersects an
axis at ±2).

3.3 The cylindrical surface ρ = 8 cm contains the surface charge density, ρS =
5e−20|z| nC/m2. (a) What is the total amount of charge present? (b) How
much electric flux leaves the surface ρ = 8 cm, 1 cm < z < 5 cm,
30◦ < φ < 90◦?

3.4 An electric field in free space is E = (5z3/ε0) âz V/m. Find the total charge
contained within a sphere of 3-m radius, centered at the origin.

3.5 Let D = 4xyax + 2(x2 + z2)ay + 4yzaz nC/m2 and evaluate surface integrals
to find the total charge enclosed in the rectangular parallelepiped 0 < x < 2,
0 < y < 3, 0 < z < 5 m.

3.6 In free space, a volume charge of constant density ρν = ρ0 exists within the
region −∞ < x < ∞, −∞ < y < ∞, and −d/2 < z < d/2. Find D and E
everywhere.

3.7 Volume charge density is located in free space as ρν = 2e−1000r nC/m3 for
0 < r < 1 mm, and ρν = 0 elsewhere. (a) Find the total charge enclosed by
the spherical surface r = 1 mm. (b) By using Gauss’s law, calculate the value
of Dr on the surface r = 1 mm.

3.8 Use Gauss’s law in integral form to show that an inverse distance field in
spherical coordinates, D = Aar/r , where A is a constant, requires every
spherical shell of 1 m thickness to contain 4πA coulombs of charge. Does
this indicate a continuous charge distribution? If so, find the charge density
variation with r .
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3.9 A uniform volume charge density of 80 µC/m3 is present throughout the
region 8 mm < r < 10 mm. Let ρν = 0 for 0 < r < 8 mm. (a) Find the total
charge inside the spherical surface r = 10 mm. (b) Find Dr at r = 10 mm.
(c) If there is no charge for r > 10 mm, find Dr at r = 20 mm.

3.10 An infinitely long cylindrical dielectric of radius b contains charge within its
volume of density ρv = aρ2, where a is a constant. Find the electric field
strength, E, both inside and outside the cylinder.

3.11 In cylindrical coordinates, let ρν = 0 for ρ < 1 mm, ρν = 2 sin(2000
πρ) nC/m3 for 1 mm < ρ < 1.5 mm, and ρν = 0 for ρ > 1.5 mm. Find D
everywhere.

3.12 The sun radiates a total power of about 3.86 × 1026 watts (W). If we imagine
the sun’s surface to be marked off in latitude and longitude and assume
uniform radiation, (a) what power is radiated by the region lying between
latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦ W? (b) What is the
power density on a spherical surface 93,000,000 miles from the sun in W/m2?

3.13 Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge
densities of 20 nC/m2, −4 nC/m2, and ρS0, respectively. (a) Find D at r = 1,
3, and 5 m. (b) Determine ρS0 such that D = 0 at r = 7 m.

3.14 A certain light-emitting diode (LED) is centered at the origin with its surface
in the xy plane. At far distances, the LED appears as a point, but the glowing
surface geometry produces a far-field radiation pattern that follows a raised
cosine law: that is, the optical power (flux) density in watts/m2 is given in
spherical coordinates by

Pd = P0
cos2 θ

2πr2
ar watts/m2

where θ is the angle measured with respect to the direction that is normal to
the LED surface (in this case, the z axis), and r is the radial distance from the
origin at which the power is detected. (a) In terms of P0, find the total power
in watts emitted in the upper half-space by the LED; (b) Find the cone angle,
θ1, within which half the total power is radiated, that is, within the range
0 < θ < θ1; (c) An optical detector, having a 1-mm2 cross-sectional area, is
positioned at r = 1 m and at θ = 45◦, such that it faces the LED. If one
milliwatt is measured by the detector, what (to a very good estimate) is the
value of P0?

3.15 Volume charge density is located as follows: ρν = 0 for ρ < 1 mm and for
ρ > 2 mm, ρν = 4ρ µC/m3 for 1 < ρ < 2 mm. (a) Calculate the total charge
in the region 0 < ρ < ρ1, 0 < z < L , where 1 < ρ1 < 2 mm. (b) Use
Gauss’s law to determine Dρ at ρ = ρ1. (c) Evaluate Dρ at ρ = 0.8 mm,
1.6 mm, and 2.4 mm.

3.16 An electric flux density is given by D = D0 aρ , where D0 is a given constant.
(a) What charge density generates this field? (b) For the specified field, what
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total charge is contained within a cylinder of radius a and height b, where the
cylinder axis is the z axis?

3.17 A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2

(a) Apply Gauss’s law to find the total flux leaving the closed surface of the
cube. (b) Evaluate ∇ · D at the center of the cube. (c) Estimate the total
charge enclosed within the cube by using Eq. (8).

3.18 State whether the divergence of the following vector fields is positive,
negative, or zero: (a) the thermal energy flow in J/(m2 − s) at any point in a
freezing ice cube; (b) the current density in A/m2 in a bus bar carrying direct
current; (c) the mass flow rate in kg/(m2 − s) below the surface of water in a
basin, in which the water is circulating clockwise as viewed from above.

3.19 A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. Let
D = xax C/m2. Use the results of Section 3.4 to estimate the net electric flux
leaving the spherical surface.

3.20 A radial electric field distribution in free space is given in spherical
coordinates as:

E1 = rρ0

3ε0
ar (r ≤ a)

E2 = (2a3 − r3)ρ0

3ε0 r2
ar (a ≤ r ≤ b)

E3 = (2a3 − b3)ρ0

3ε0 r2
ar (r ≥ b)

where ρ0, a, and b are constants. (a) Determine the volume charge density in
the entire region (0 ≤ r ≤ ∞) by the appropriate use of ∇ · D = ρv . (b) In
terms of given parameters, find the total charge, Q, within a sphere of radius
r where r > b.

3.21 Calculate ∇ · D at the point specified if (a) D = (1/z2)[10xyz ax +
5x2z ay + (2z3 − 5x2 y) az] at P(−2, 3, 5); (b) D = 5z2 aρ + 10ρz az at
P(3, −45◦, 5); (c) D = 2r sin θ sin φ ar + r cos θ sin φ aθ + r cos φ aφ at
P(3, 45◦, −45◦).

3.22 (a) A flux density field is given as F1 = 5az . Evaluate the outward flux of F1

through the hemispherical surface, r = a, 0 < θ < π/2, 0 < φ < 2π .
(b) What simple observation would have saved a lot of work in part a?
(c) Now suppose the field is given by F2 = 5zaz . Using the appropriate
surface integrals, evaluate the net outward flux of F2 through the closed
surface consisting of the hemisphere of part a and its circular base in the xy
plane. (d) Repeat part c by using the divergence theorem and an appropriate
volume integral.

3.23 (a) A point charge Q lies at the origin. Show that div D is zero everywhere
except at the origin. (b) Replace the point charge with a uniform volume
charge density ρv0 for 0 < r < a. Relate ρv0 to Q and a so that the total
charge is the same. Find div D everywhere.
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3.24 In a region in free space, electric flux density is found to be

D =
{

ρ0(z + 2d) az C/m2 (−2d ≤ z ≤ 0)

−ρ0(z − 2d) az C/m2 (0 ≤ z ≤ 2d)

Everywhere else, D = 0. (a) Using ∇ · D = ρv , find the volume charge
density as a function of position everywhere. (b) Determine the electric flux
that passes through the surface defined by z = 0, −a ≤ x ≤ a, −b ≤ y ≤ b.
(c) Determine the total charge contained within the region −a ≤ x ≤ a,
−b ≤ y ≤ b, −d ≤ z ≤ d. (d) Determine the total charge contained within
the region −a ≤ x ≤ a, −b ≤ y ≤ b, 0 ≤ z ≤ 2d .

3.25 Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D = 5(r − 3)3 ar C/m2. (a) What is the volume charge density at r = 4?
(b) What is the electric flux density at r = 4? (c) How much electric flux
leaves the sphere r = 4? (d) How much charge is contained within the sphere
r = 4?

3.26 If we have a perfect gas of mass density ρm kg/m3, and we assign a
velocity U m/s to each differential element, then the mass flow rate is
ρmU kg/(m2 − s). Physical reasoning then leads to the continuity equation,
∇ · (ρmU) = −∂ρm/∂t . (a) Explain in words the physical interpretation of
this equation. (b) Show that

∮
s ρmU · dS = −d M/dt , where M is the total

mass of the gas within the constant closed surface S, and explain the physical
significance of the equation.

3.27 Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205 ar/r2 µC/m2 for
r ≥ 0.08 m. (a) Find ρν for r = 0.06 m. (b) Find ρν for r = 0.1 m. (c) What
surface charge density could be located at r = 0.08 m to cause D = 0 for
r > 0.08 m?

3.28 Repeat Problem 3.8, but use ∇ · D = ρν and take an appropriate volume
integral.

3.29 In the region of free space that includes the volume 2 < x, y, z < 3, D =
2
z2 (yz ax + xz ay − 2xy az) C/m2. (a) Evaluate the volume integral side of
the divergence theorem for the volume defined here. (b) Evaluate the surface
integral side for the corresponding closed surface.

3.30 (a) Use Maxwell’s first equation, ∇ · D = ρv , to describe the variation of the
electric field intensity with x in a region in which no charge density exists
and in which a nonhomogeneous dielectric has a permittivity that increases
exponentially with x . The field has an x component only; (b) repeat part (a),
but with a radially directed electric field (spherical coordinates), in which
again ρv = 0, but in which the permittivity decreases exponentially with r .

3.31 Given the flux density D = 16
r cos(2θ ) aθ C/m2, use two different methods to

find the total charge within the region 1 < r < 2 m, 1 < θ < 2 rad,
1 < φ < 2 rad.



4C H A P T E R

Energy and Potential

I n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in
finding the electric field about several simple distributions of charge, and also with
Gauss’s law and its application in determining the field about some symmetrical

charge arrangements. The use of Gauss’s law was invariably easier for these highly
symmetrical distributions because the problem of integration always disappeared
when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as
that of two unlike point charges separated by a small distance, we would have found it
impossible to choose a suitable gaussian surface and obtain an answer. Coulomb’s law,
however, is more powerful and enables us to solve problems for which Gauss’s law is
not applicable. The application of Coulomb’s law is laborious, detailed, and often quite
complex, the reason for this being precisely the fact that the electric field intensity,
a vector field, must be found directly from the charge distribution. Three different
integrations are needed in general, one for each component, and the resolution of the
vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with a single integration and then determine the electric field from this scalar
by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential field.
We shall find that it has a very real physical interpretation and is more familiar to
most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding
electric fields—a single scalar integration, although not always as simple as we might
wish, followed by a pleasant differentiation.

75
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point
at which we wish to find the value of this vector field. If we attempt to move the test
charge against the electric field, we have to exert a force equal and opposite to that
exerted by the field, and this requires us to expend energy or do work. If we wish to
move the charge in the direction of the field, our energy expenditure turns out to be
negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E. The
force on Q arising from the electric field is

FE = QE (1)

where the subscript reminds us that this force arises from the field. The component
of this force in the direction dL which we must overcome is

FE L = F · aL = QE · aL

where aL = a unit vector in the direction of dL.

The force that we must apply is equal and opposite to the force associated with
the field,

Fappl = −QE · aL

and the expenditure of energy is the product of the force and distance. That is, the
differential work done by an external source moving charge Q is dW = −QE · aLd L ,

or dW = −QE · dL (2)

where we have replaced aLdL by the simpler expression dL.

This differential amount of work required may be zero under several conditions
determined easily from Eq. (2). There are the trivial conditions for which E, Q, or dL
is zero, and a much more important case in which E and dL are perpendicular. Here
the charge is moved always in a direction at right angles to the electric field. We can
draw on a good analogy between the electric field and the gravitational field, where,
again, energy must be expended to move against the field. Sliding a mass around with
constant velocity on a frictionless surface is an effortless process if the mass is moved
along a constant elevation contour; positive or negative work must be done in moving
it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge
a finite distance must be determined by integrating,

W = −Q
∫ final

init
E · dL (3)
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where the path must be specified before the integral can be evaluated. The charge is
assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following
section to its interpretation and evaluation.

D4.1. Given the electric field E = 1

z2
(8xyzax + 4x2zay − 4x2 yaz) V/m, find

the differential amount of work done in moving a 6-nC charge a distance of
2 µm, starting at P(2, −2, 3) and proceeding in the direction aL = (a) − 6

7 ax +
3
7 ay + 2

7 az ; (b) 6
7 ax − 3

7 ay − 2
7 az ; (c) 3

7 ax + 6
7 ay .

Ans. −149.3 fJ; 149.3 fJ; 0

4.2 THE LINE INTEGRAL
The integral expression for the work done in moving a point charge Q from one
position to another, Eq. (3), is an example of a line integral, which in vector-analysis
notation always takes the form of the integral along some prescribed path of the dot
product of a vector field and a differential vector path length dL. Without using vector
analysis we should have to write

W = −Q
∫ final

init
EL dL

where EL = component of E along dL.

A line integral is like many other integrals which appear in advanced analysis,
including the surface integral appearing in Gauss’s law, in that it is essentially de-
scriptive. We like to look at it much more than we like to work it out. It tells us to
choose a path, break it up into a large number of very small segments, multiply the
component of the field along each segment by the length of the segment, and then
add the results for all the segments. This is a summation, of course, and the integral
is obtained exactly only when the number of segments becomes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from
an initial position B to a final position1 A and a uniform electric field is selected
for simplicity. The path is divided into six segments, �L1, �L2, . . . , �L6, and the
components of E along each segment are denoted by EL1, EL2, . . . , EL6. The work
involved in moving a charge Q from B to A is then approximately

W = −Q(EL1�L1 + EL2�L2 + · · · + EL6�L6)

or, using vector notation,

W = −Q(E1 · �L1 + E2 · �L2 + · · · + E6 · �L6)

1 The final position is given the designation A to correspond with the convention for potential
difference, as discussed in the following section.
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Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line
integral of E between points B and A is independent of the path selected, even in a
nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

E1 = E2 = · · · = E6

W = −QE · (�L1 + �L2 + · · · + �L6)

What is this sum of vector segments in the preceding parentheses? Vectors add
by the parallelogram law, and the sum is just the vector directed from the initial point
B to the final point A, LB A. Therefore

W = −QE · LB A (uniform E) (4)

Remembering the summation interpretation of the line integral, this result for the
uniform field can be obtained rapidly now from the integral expression

W = −Q
∫ A

B
E · dL (5)

as applied to a uniform field

W = −QE ·
∫ A

B
dL

where the last integral becomes LB A and

W = −QE · LB A (uniform E)
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For this special case of a uniform electric field intensity, we should note that the
work involved in moving the charge depends only on Q, E, and LB A, a vector drawn
from the initial to the final point of the path chosen. It does not depend on the particular
path we have selected along which to carry the charge. We may proceed from B to A
on a straight line or via the Old Chisholm Trail; the answer is the same. We show in
Section 4.5 that an identical statement may be made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in Eq. (5).

EXAMPLE 4.1

We are given the nonuniform field

E = yax + xay + 2az

and we are asked to determine the work expended in carrying 2C from B(1, 0, 1) to
A(0.8, 0.6, 1) along the shorter arc of the circle

x2 + y2 = 1 z = 1

Solution. We use W = −Q
∫ A

B E · dL, where E is not necessarily constant. Working
in rectangular coordinates, the differential path dL is dxax + dyay + dzaz , and the
integral becomes

W = −Q
∫ A

B
E · dL

= −2
∫ A

B
(yax + xay + 2az) · (dx ax + dy ay + dz az)

= −2
∫ 0.8

1
y dx − 2

∫ 0.6

0
x dy − 4

∫ 1

1
dz

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular
path (and selecting the sign of the radical which is correct for the quadrant involved),
we have

W = −2
∫ 0.8

1

√
1 − x2 dx − 2

∫ 0.6

0

√
1 − y2 dy − 0

= −
[
x
√

1 − x2 + sin−1 x
]0.8

1
−

[
y
√

1 − y2 + sin−1 y
]0.6

0

= −(0.48 + 0.927 − 0 − 1.571) − (0.48 + 0.644 − 0 − 0)

= −0.96 J
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EXAMPLE 4.2

Again find the work required to carry 2C from B to A in the same field, but this time
use the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define
the line:

y − yB = yA − yB

xA − xB
(x − xB)

z − zB = z A − zB

yA − yB
(y − yB)

x − xB = xA − xB

z A − zB
(z − zB)

From the first equation we have

y = −3(x − 1)

and from the second we obtain

z = 1

Thus,

W = −2
∫ 0.8

1
y dx − 2

∫ 0.6

0
x dy − 4

∫ 1

1
dz

= 6
∫ 0.8

1
(x − 1) dx − 2

∫ 0.6

0

(
1 − y

3

)
dy

= −0.96 J

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work done is
independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that dy = −3 dx and
dx = − 1

3 dy. These substitutions may be made in the first two integrals, along with
a change in limits, and the answer may be obtained by evaluating the new integrals.
This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-
ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in
Section 1.8, and spherical in Section 1.9):

dL = dx ax + dy ay + dz az (rectangular) (6)

dL = dρ aρ + ρ dφaφ + dz az (cylindrical) (7)

dL = dr ar + r dθ aθ + r sin θ dφ aφ (spherical) (8)

The interrelationships among the several variables in each expression are determined
from the specific equations for the path.
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Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried
in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate
several paths that we might take near an infinite line charge. The field has been
obtained several times and is entirely in the radial direction,

E = Eρaρ = ρL

2πε0ρ
aρ

First we find the work done in carrying the positive charge Q about a circular
path of radius ρb centered at the line charge, as illustrated in Figure 4.2a. Without
lifting a pencil, we see that the work must be nil, for the path is always perpendicular
to the electric field intensity, or the force on the charge is always exerted at right
angles to the direction in which we are moving it. For practice, however, we will set
up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular
path selected demands that dρ and dz be zero, so dL = ρ1 dφ aφ . The work is then

W = −Q
∫ final

init

ρL

2πε0ρ1
aρ · ρ1 dφ aφ

= −Q
∫ 2π

0

ρL

2πε0
dφ aρ · aφ = 0

We will now carry the charge from ρ = a to ρ = b along a radial path
(Figure 4.2b). Here dL = dρ aρ and

W = −Q
∫ final

init

ρL

2πε0ρ
aρ · dρ aρ = −Q

∫ b

a

ρL

2πε0

d ρ

ρ

or

W = − QρL

2πε0
ln

b

a
Because b is larger than a, ln (b/a) is positive, and the work done is negative,

indicating that the external source that is moving the charge receives energy.
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One of the pitfalls in evaluating line integrals is a tendency to use too many minus
signs when a charge is moved in the direction of a decreasing coordinate value. This is
taken care of completely by the limits on the integral, and no misguided attempt should
be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).
We still have dL = dρ aρ and show the different direction by recognizing ρ = b as
the initial point and ρ = a as the final point,

W = −Q
∫ a

b

ρL

2πε0

d ρ

ρ
= QρL

2πε0
ln

b

a

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to
A(0, 2, 0) along the path y = 2 − 2x , z = 0 in the field E = (a) 5ax V/m;
(b) 5xax V/m; (c) 5xax + 5yayV/m.

Ans. 20 J; 10 J; −30 J

D4.3. We will see later that a time-varying E field need not be conservative.
(If it is not conservative, the work expressed by Eq. (3) may be a function of the
path used.) Let E = yax V/m at a certain instant of time, and calculate the work
required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line
segments joining: (a) (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3); (b) (1, 3, 5) to
(1, 3, 3) to (1, 0, 3) to (2, 0, 3).

Ans. −9 J; 0

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge Q from one point to another in an electric
field E, “Potential difference and work.”

W = −Q
∫ final

init
E · dL

In much the same way as we defined the electric field intensity as the force on a
unit test charge, we now define potential difference V as the work done (by an external
source) in moving a unit positive charge from one point to another in an electric field,

Potential difference = V = −
∫ final

init
E · dL (9)
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We have to agree on the direction of movement, and we do this by stating that
VAB signifies the potential difference between points A and B and is the work done in
moving the unit charge from B (last named) to A (first named). Thus, in determining
VAB , B is the initial point and A is the final point. The reason for this somewhat
peculiar definition will become clearer shortly, when it is seen that the initial point B
is often taken at infinity, whereas the final point A represents the fixed position of the
charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points A and B is

VAB = −
∫ A

B
E · dL V (10)

and VAB is positive if work is done in carrying the positive charge from B to A.

From the line-charge example of Section 4.2 we found that the work done in
taking a charge Q from ρ = b to ρ = a was

W = QρL

2πε0
ln

b

a

Thus, the potential difference between points at ρ = a and ρ = b is

Vab = W

Q
= ρL

2πε0
ln

b

a
(11)

We can try out this definition by finding the potential difference between points
A and B at radial distances rA and rB from a point charge Q. Choosing an origin at Q,

E = Er ar = Q

4πε0r2
ar

and

dL = dr ar

we have

VAB = −
∫ A

B
E · dL = −

∫ rA

rB

Q

4πε0r2
dr = Q

4πε0

(
1

rA
− 1

rB

)
(12)

If rB > rA, the potential difference VAB is positive, indicating that energy is
expended by the external source in bringing the positive charge from rB to rA. This
agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,
rather than the potential difference between two points, but this means only that we
agree to measure every potential difference with respect to a specified reference point
that we consider to have zero potential. Common agreement must be reached on
the zero reference before a statement of the potential has any significance. A person
having one hand on the deflection plates of a cathode-ray tube that are “at a potential
of 50 V” and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentials in that
circuit are customarily measured with respect to the metallic shield about the tube.
The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-
tential measurements is “ground,” by which we mean the potential of the surface
region of the earth itself. Theoretically, we usually represent this surface by an infinite
plane at zero potential, although some large-scale problems, such as those involving
propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” is infinity. This usually appears in theo-
retical problems approximating a physical situation in which the earth is relatively far
removed from the region in which we are interested, such as the static field near the
wing tip of an airplane that has acquired a charge in flying through a thunderhead, or
the field inside an atom. Working with the gravitational potential field on earth, the
zero reference is normally taken at sea level; for an interplanetary mission, however,
the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero
reference when cylindrical symmetry is present and infinity proves inconvenient. In a
coaxial cable the outer conductor is selected as the zero reference for potential. And,
of course, there are numerous special problems, such as those for which a two-sheeted
hyperboloid or an oblate spheroid must be selected as the zero-potential reference,
but these need not concern us immediately.

If the potential at point A is VA and that at B is VB , then

VAB = VA − VB (13)

where we necessarily agree that VA and VB shall have the same zero reference point.

D4.4. An electric field is expressed in rectangular coordinates by E = 6x2ax +
6yay +4azV/m. Find: (a) VM N if points M and N are specified by M(2, 6, −1)
and N (−3, −3, 2); (b) VM if V = 0 at Q(4, −2, −35); (c) VN if V = 2 at
P(1, 2, −4).

Ans. −139.0 V; −120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between
two points located at r = rA and r = rB in the field of a point charge Q placed
at the origin. How might we conveniently define a zero reference for potential? The
simplest possibility is to let V = 0 at infinity. If we let the point at r = rB recede to
infinity, the potential at rA becomes

VA = Q

4πε0rA
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or, as there is no reason to identify this point with the A subscript,

V = Q

4πε0r
(14)

This expression defines the potential at any point distant r from a point charge Q
at the origin, the potential at infinite radius being taken as the zero reference. Returning
to a physical interpretation, we may say that Q/4πε0r joules of work must be done
in carrying a unit charge from infinity to any point r meters from the charge Q.

A convenient method to express the potential without selecting a specific zero
reference entails identifying rA as r once again and letting Q/4πε0rB be a constant.
Then

V = Q

4πε0r
+ C1 (15)

and C1 may be selected so that V = 0 at any desired value of r . We could also select
the zero reference indirectly by electing to let V be V0 at r = r0.

It should be noted that the potential difference between two points is not a func-
tion of C1.

Equations (14) and (15) represent the potential field of a point charge. The po-
tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those points
having the same value of potential. All field lines would be perpendicular to such a
surface at the points where they intersect it. Therefore, no work is involved in moving
a unit charge around on an equipotential surface. The equipotential surfaces in the
potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it
is an inverse-distance field, whereas the electric field intensity was found to be an
inverse-square-law function. A similar result occurs for the gravitational force field
of a point mass (inverse-square law) and the gravitational potential field (inverse
distance). The gravitational force exerted by the earth on an object one million miles
from it is four times that exerted on the same object two million miles away. The
kinetic energy given to a freely falling object starting from the end of the universe
with zero velocity, however, is only twice as much at one million miles as it is at two
million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V1 if point
P1 is located at P1(−2, 3, −1) and (a) V = 0 at (6, 5, 4); (b) V = 0 at infinity;
(c) V = 5 V at (2, 0, 4).

Ans. 20.67 V; 36.0 V; 10.89 V
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive
charge from the zero reference to the point, and we have suspected that this work, and
hence the potential, is independent of the path taken. If it were not, potential would
not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field
of the single point charge for which we showed, in Section 4.4, the independence
with regard to the path, noting that the field is linear with respect to charge so that
superposition is applicable. It will then follow that the potential of a system of charges
has a value at any point which is independent of the path taken in carrying the test
charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q1

and locate at r1, involves only the distance |r − r1| from Q1 to the point at r where
we are establishing the value of the potential. For a zero reference at infinity, we have

V (r) = Q1

4πε0|r − r1|
The potential arising from two charges, Q1 at r1 and Q2 at r2, is a function only of
|r − r1| and |r − r2|, the distances from Q1 and Q2 to the field point, respectively.

V (r) = Q1

4πε0|r − r1| + Q2

4πε0|r − r2|
Continuing to add charges, we find that the potential arising from n point charges is

V (r) =
n∑

m=1

Qm

4πε0|r − rm | (16)

If each point charge is now represented as a small element of a continuous volume
charge distribution ρν�ν, then

V (r) = ρν(r1)�ν1

4πε0|r − r1| + ρν(r2)�ν2

4πε0|r − r2| + · · · + ρν(rn)�νn

4πε0|r − rn|
As we allow the number of elements to become infinite, we obtain the integral

expression

V (r) =
∫

vol

ρν(r′) dv ′

4πε0|r − r′| (17)

We have come quite a distance from the potential field of the single point charge,
and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of
each term. The potential V (r) is determined with respect to a zero reference potential
at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge
density ρv (r′) and differential volume element dv ′ combine to represent a differential
amount of charge ρν(r′) dv ′ located at r′. The distance |r − r′| is that distance from
the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the
integration is along the line or over the surface:

V (r) =
∫

ρL (r′) d L ′

4πε0|r − r′| (18)

V (r) =
∫

S

ρS(r′) d S′

4πε0|r − r′| (19)

The most general expression for potential is obtained by combining Eqs.(16)–(19).
These integral expressions for potential in terms of the charge distribution should

be compared with similar expressions for the electric field intensity, such as Eq. (15)
in Section 2.3:

E(r) =
∫

vol

ρν(r′) dv ′

4πε0|r − r′|2
r − r′

|r − r′|
The potential again is inverse distance, and the electric field intensity, inverse-

square law. The latter, of course, is also a vector field.

EXAMPLE 4.3

To illustrate the use of one of these potential integrals, we will find V on the z axis for
a uniform line charge ρL in the form of a ring, ρ = a, in the z = 0 plane, as shown
in Figure 4.3.

Solution. Working with Eq. (18), we have d L ′ = adφ′, r = zaz , r′ = aaρ , |r−r′| =√
a2 + z2, and

V =
∫ 2π

0

ρLa dφ′

4πε0

√
a2 + z2

= ρLa

2ε0

√
a2 + z2

For a zero reference at infinity, then:

1. The potential arising from a single point charge is the work done in carrying a
unit positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity to
the point in question along any path we choose.
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Figure 4.3 The potential field of a ring of uniform line
charge density is easily obtained from V = ∫

ρL (r′) dL ′/
(4πε0|r − r′|).

In other words, the expression for potential (zero reference at infinity),

VA = −
∫ A

∞
E · dL

or potential difference,

VAB = VA − VB = −
∫ A

B
E · dL

is not dependent on the path chosen for the line integral, regardless of the source of
the E field.

This result is often stated concisely by recognizing that no work is done in
carrying the unit charge around any closed path, or

∮
E · dL = 0 (20)

A small circle is placed on the integral sign to indicate the closed nature of the
path. This symbol also appeared in the formulation of Gauss’s law, where a closed
surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday
demonstrated it was incomplete when time-varying magnetic fields were present. One
of Maxwell’s greatest contributions to electromagnetic theory was in showing that a
time-varying electric field produces a magnetic field, and therefore we should expect
to find later that Eq. (20) is not correct when either E or the magnetic field varies
with time.

Restricting our attention to the static case where E does not change with time,
consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and
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Figure 4.4 A simple dc-circuit problem that must be
solved by applying

∮
E · dL = 0 in the form of Kirchhoff’s

voltage law.

(20) states that no work is involved in carrying a unit charge from A through R2 and
R3 to B and back to A through R1, or that the sum of the potential differences around
any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law
for voltages, more general in that we can apply it to any region where an electric
field exists and we are not restricted to a conventional circuit composed of wires,
resistances, and batteries. Equation (20) must be amended before we can apply it to
time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed
line integral of the field is zero) is said to be a conservative field. The name arises from
the fact that no work is done (or that energy is conserved) around a closed path. The
gravitational field is also conservative, for any energy expended in moving (raising)
an object against the field is recovered exactly when the object is returned (lowered)
to its original position. A nonconservative gravitational field could solve our energy
problems forever.

Given a nonconservative field, it is of course possible that the line integral may
be zero for certain closed paths. For example, consider the force field, F = sin πρ aφ .
Around a circular path of radius ρ = ρ1, we have dL = ρ dφ aφ , and

∮
F · dL =

∫ 2π

0
sin πρ1aφ · ρ1dφ aφ =

∫ 2π

0
ρ1 sin πρ1 dφ

= 2πρ1 sin πρ1

The integral is zero if ρ1 = 1, 2, 3, . . . , etc., but it is not zero for other values of ρ1,
or for most other closed paths, and the given field is not conservative. A conservative
field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential
at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the
line ρ = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, −1); (c) 12 nC/m on
the line y = 2.5, z = 0, −1.0 < x < 1.0.

Ans. 529 V; 43.2 V; 66.3 V
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4.6 POTENTIAL GRADIENT
We now have two methods of determining potential, one directly from the electric field
intensity by means of a line integral, and another from the basic charge distribution
itself by a volume integral. Neither method is very helpful in determining the fields
in most practical problems, however, for as we will see later, neither the electric field
intensity nor the charge distribution is very often known. Preliminary information is
much more apt to consist of a description of two equipotential surfaces, such as the
statement that we have two parallel conductors of circular cross section at potentials
of 100 and −100 V. Perhaps we wish to find the capacitance between the conductors,
or the charge and current distribution on the conductors from which losses may be
calculated.

These quantities may be easily obtained from the potential field, and our im-
mediate goal will be a simple method of finding the electric field intensity from the
potential.

We already have the general line-integral relationship between these quantities,

V = −
∫

E · dL (21)

but this is much easier to use in the reverse direction: given E, find V .

However, Eq. (21) may be applied to a very short element of length �L along
which E is essentially constant, leading to an incremental potential difference �V,

�V =̇ −E · �L (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and
V both change as we move from point to point. Equation (22) tells us to choose an
incremental vector element of length �L = �L aL and multiply its magnitude by

Figure 4.5 A vector incremental element of
length �L is shown making an angle of θ with an
E field, indicated by its streamlines. The sources
of the field are not shown.
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the component of E in the direction of aL (one interpretation of the dot product) to
obtain the small potential difference between the final and initial points of �L.

If we designate the angle between �L and E as θ , then

�V =̇ −E�L cos θ

We now pass to the limit and consider the derivative dV/d L . To do this, we need
to show that V may be interpreted as a function V (x, y, z). So far, V is merely the
result of the line integral (21). If we assume a specified starting point or zero reference
and then let our end point be (x, y, z), we know that the result of the integration is a
unique function of the end point (x, y, z) because E is a conservative field. Therefore
V is a single-valued function V (x, y, z). We may then pass to the limit and obtain

dV

d L
= −E cos θ

In which direction should �L be placed to obtain a maximum value of �V ?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of �L. The magnitude �L is also constant, and our
variable is aL , the unit vector showing the direction of �L. It is obvious that the
maximum positive increment of potential, �Vmax, will occur when cos θ is −1, or
�L points in the direction opposite to E. For this condition,

dV

d L

∣∣∣∣
max

= E

This little exercise shows us two characteristics of the relationship between E
and V at any point:

1. The magnitude of the electric field intensity is given by the maximum value of
the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance increment is
opposite to E or, in other words, the direction of E is opposite to the direction in
which the potential is increasing the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended
to show the information we have been given about some potential field. It does this by
showing the equipotential surfaces (shown as lines in the two-dimensional sketch).
We desire information about the electric field intensity at point P . Starting at P , we lay
off a small incremental distance �L in various directions, hunting for that direction
in which the potential is changing (increasing) the most rapidly. From the sketch, this
direction appears to be left and slightly upward. From our second characteristic above,
the electric field intensity is therefore oppositely directed, or to the right and slightly
downward at P . Its magnitude is given by dividing the small increase in potential by
the small element of length.

It seems likely that the direction in which the potential is increasing the most
rapidly is perpendicular to the equipotentials (in the direction of increasing potential),
and this is correct, for if �L is directed along an equipotential, �V = 0 by our
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Figure 4.6 A potential field is shown by its equipotential
surfaces. At any point the E field is normal to the
equipotential surface passing through that point and is
directed toward the more negative surfaces.

definition of an equipotential surface. But then

�V = −E · �L = 0

and as neither E nor �L is zero, E must be perpendicular to this �L or perpendicular
to the equipotentials.

Because the potential field information is more likely to be determined first, let
us describe the direction of �L, which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field intensity.
We do this by letting aN be a unit vector normal to the equipotential surface and
directed toward the higher potentials. The electric field intensity is then expressed in
terms of the potential,

E = −dV

d L

∣∣∣∣
max

aN (23)

which shows that the magnitude of E is given by the maximum space rate of change
of V and the direction of E is normal to the equipotential surface (in the direction of
decreasing potential).

Because dV/d L|max occurs when �L is in the direction of aN , we may remind
ourselves of this fact by letting

dV

d L

∣∣∣∣
max

= dV

d N

and

E = − dV

d N
aN (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of
finding the electric field intensity from the potential. Both are descriptive of a general
procedure, and we do not intend to use them directly to obtain quantitative information.
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This procedure leading from V to E is not unique to this pair of quantities, however,
but has appeared as the relationship between a scalar and a vector field in hydraulics,
thermodynamics, and magnetics, and indeed in almost every field to which vector
analysis has been applied.

The operation on V by which −E is obtained is known as the gradient, and the
gradient of a scalar field T is defined as

Gradient of T = grad T = dT

d N
aN (25)

where aN is a unit vector normal to the equipotential surfaces, and that normal is
chosen, which points in the direction of increasing values of T .

Using this new term, we now may write the relationship between V and E as

E = −grad V (26)

Because we have shown that V is a unique function of x, y, and z, we may take
its total differential

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz

But we also have

dV = −E · dL = −Ex dx − Ey dy − Ez dz

Because both expressions are true for any dx, dy, and dz, then

Ex = −∂V

∂x

Ey = −∂V

∂y

Ez = −∂V

∂z
These results may be combined vectorially to yield

E = −
(

∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az

)
(27)

and comparing Eqs. (26) and (27) provides us with an expression which may be used
to evaluate the gradient in rectangular coordinates,

grad V = ∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors
that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the
gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of
change of a scalar quantity and the direction in which this maximum occurs, the vector
nature of the gradient should be self-evident.

The vector operator

∇ = ∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

may be used formally as an operator on a scalar, T , ∇T , producing

∇T = ∂T

∂x
ax + ∂T

∂y
ay + ∂T

∂z
az

from which we see that

∇T = grad T

This allows us to use a very compact expression to relate E and V,

E = −∇V (29)

The gradient may be expressed in terms of partial derivatives in other coordinate
systems through the application of its definition Eq. (25). These expressions are
derived in Appendix A and repeated here for convenience when dealing with problems
having cylindrical or spherical symmetry. They also appear inside the back cover.

∇V = ∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az (rectangular) (30)

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ + ∂V

∂z
az (cylindrical) (31)

∇V = ∂V

∂r
ar + 1

r

∂V

∂θ
aθ + 1

r sin θ

∂V

∂φ
aφ (spherical) (32)

Note that the denominator of each term has the form of one of the components of dL in
that coordinate system, except that partial differentials replace ordinary differentials;
for example, r sin θ dφ becomes r sin θ ∂φ.

We now illustrate the gradient concept with an example.

EXAMPLE 4.4

Given the potential field, V = 2x2 y − 5z, and a point P(−4, 3, 6), we wish to find
several numerical values at point P: the potential V , the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density ρν.

Solution. The potential at P(−4, 5, 6) is

VP = 2(−4)2(3) − 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,

E = −∇V = −4xyax − 2x2ay + 5az V/m

The value of E at point P is

EP = 48ax − 32ay + 5az V/m

and

|EP | =
√

482 + (−32)2 + 52 = 57.9 V/m

The direction of E at P is given by the unit vector

aE,P = (48ax − 32ay + 5az)/57.9

= 0.829ax − 0.553ay + 0.086az

If we assume these fields exist in free space, then

D = ε0E = −35.4xy ax − 17.71x2 ay + 44.3 az pC/m3

Finally, we may use the divergence relationship to find the volume charge density that
is the source of the given potential field,

ρν = ∇ · D = −35.4y pC/m3

At P , ρν = −106.2 pC/m3.

D4.7. A portion of a two-dimensional (Ez = 0) potential field is shown in
Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approx-
imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. −1075ay V/m; −600ax − 700ay V/m; −500ax − 650ay V/m

D4.8. Given the potential field in cylindrical coordinates, V = 100

z2 + 1
ρ cos φV,

and point P at ρ = 3 m, φ = 60◦, z = 2 m, find values at P for (a) V ; (b) E;
(c) E ; (d) dV/d N ; (e) aN ; ( f ) ρν in free space.

Ans. 30.0 V; −10.00aρ +17.3aφ +24.0azV/m; 31.2 V/m; 31.2 V/m; 0.32aρ −0.55aφ

− 0.77az ; −234 pC/m3

4.7 THE ELECTRIC DIPOLE
The dipole fields that we develop in this section are quite important because they
form the basis for the behavior of dielectric materials in electric fields, as discussed
in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of
Chapter 5. Moreover, this development will serve to illustrate the importance of the
potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of
equal magnitude and opposite sign, separated by a distance that is small compared to
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Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.
The dipole is shown in Figure 4.8a. The distant point P is described by the spherical
coordinates r, θ, and φ = 90◦, in view of the azimuthal symmetry. The positive and
negative point charges have separation d and rectangular coordinates (0, 0, 1

2 d) and
(0, 0, − 1

2 d), respectively.
So much for the geometry. What would we do next? Should we find the total

electric field intensity by adding the known fields of each point charge? Would it be
easier to find the total potential field first? In either case, having found one, we will
find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in
spherical coordinates (symmetry shows Eφ is zero), and then the only way to find V
from E is by use of the line integral. This last step includes establishing a suitable zero
reference for potential, since the line integral gives us only the potential difference
between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem.
This is because we find the potential as a function of position by simply adding the
scalar potentials from the two charges. The position-dependent vector magnitude and
direction of E are subsequently evaluated with relative ease by taking the negative
gradient of V.

Choosing this simpler method, we let the distances from Q and −Q to P be R1

and R2, respectively, and write the total potential as

V = Q

4πε0

(
1

R1
− 1

R2

)
= Q

4πε0

R2 − R1

R1 R2
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CHAPTER 4 PROBLEMS
4.1 The value of E at P(ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ

− 200aφ + 300az V/m. Determine the incremental work required to move a
20 µC charge a distance of 6 µm: (a) in the direction of aρ ; (b) in the
direction of aφ ; (c) in the direction of az ; (d) in the direction of E; (e) in the
direction of G = 2ax − 3ay + 4az .

4.2 A positive point charge of magnitude q1 lies at the origin. Derive an
expression for the incremental work done in moving a second point charge q2

through a distance dx from the starting position (x, y, z), in the direction
of −ax .

4.3 If E = 120aρV/m, find the incremental amount of work done in moving
a 50-µC charge a distance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)
Q(2, 1, 4) toward P(1, 2, 3).

4.4 An electric field in free space is given by E = xax + yay + zaz V/m. Find
the work done in moving a 1-µC charge through this field (a) from (1, 1, 1)
to (0, 0, 0); (b) from (ρ = 2, φ = 0) to (ρ = 2, φ = 90◦); (c) from (r = 10,
θ = θ0) to (r = 10, θ = θ0 + 180◦).

4.5 Compute the value of
∫ P

A G · dL for G = 2yax with A(1, −1, 2) and
P(2, 1, 2) using the path (a) straight-line segments A(1, −1, 2) to B(1, 1, 2)
to P(2, 1, 2); (b) straight-line segments A(1, −1, 2) to C(2, −1, 2) to
P(2, 1, 2).

4.6 An electric field in free space is given as E = x âx + 4z ây + 4y âz . Given
V (1, 1, 1) = 10 V, determine V (3, 3, 3).

4.7 Let G = 3xy2ax + 2zay Given an initial point P(2, 1, 1) and a final point
Q(4, 3, 1), find

∫
G · dL using the path (a) straight line: y = x − 1,

z = 1; (b) parabola: 6y = x2 + 2, z = 1.

4.8 Given E = −xax + yay , (a) find the work involved in moving a unit positive
charge on a circular arc, the circle centered at the origin, from x = a to
x = y = a/

√
2; (b) verify that the work done in moving the charge around

the full circle from x = a is zero.

4.9 A uniform surface charge density of 20 nC/m2 is present on the spherical
surface r = 0.6 cm in free space. (a) Find the absolute potential at
P(r = 1 cm, θ = 25◦, φ = 50◦). (b) Find VAB , given points A(r = 2 cm,
θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦).

4.10 A sphere of radius a carries a surface charge density of ρs0 C/m2. (a) Find
the absolute potential at the sphere surface. (b) A grounded conducting shell
of radius b where b > a is now positioned around the charged sphere. What
is the potential at the inner sphere surface in this case?

4.11 Let a uniform surface charge density of 5 nC/m2 be present at the z = 0
plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
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and a point charge of 2 µC be present at P(2, 0, 0). If V = 0 at M(0, 0, 5),
find V at N (1, 2, 3).

4.12 In spherical coordinates, E = 2r/(r2 + a2)2ar V/m. Find the potential at any
point, using the reference (a)V = 0 at infinity; (b) V = 0 at r = 0;
(c)V = 100 V at r = a.

4.13 Three identical point charges of 4 pC each are located at the corners of an
equilateral triangle 0.5 mm on a side in free space. How much work must be
done to move one charge to a point equidistant from the other two and on the
line joining them?

4.14 Given the electric field E = (y + 1)ax + (x − 1)ay + 2az find the potential
difference between the points (a) (2, −2, −1) and (0, 0, 0); (b) (3, 2, −1) and
(−2, −3, 4).

4.15 Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at
x = −1, y = 2 in free space. If the potential at the origin is 100 V, find V at
P(4, 1, 3).

4.16 A spherically symmetric charge distribution in free space (with 0 < r < ∞)
is known to have a potential function V (r ) = V0a2/r2, where V0 and a are
constants. (a) Find the electric field intensity. (b) Find the volume charge
density. (c) Find the charge contained inside radius a. (d) Find the total
energy stored in the charge (or equivalently, in its electric field).

4.17 Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and
6 cm, respectively, in free space. Assume V = 0 at ρ = 4 cm, and calculate
V at (a) ρ = 5 cm; (b) ρ = 7 cm.

4.18 Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2)
extending along the x axis from x = a to +∞, where a > 0. Assume a zero
reference at infinity.

4.19 The annular surface 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface
charge density ρs = 5ρ nC/m2. Find V at P(0, 0, 2 cm) if V = 0 at infinity.

4.20 In a certain medium, the electric potential is given by

V (x) = ρ0

aε0

(
1 − e−ax

)

where ρ0 and a are constants. (a) Find the electric field intensity, E. (b) Find
the potential difference between the points x = d and x = 0. (c) If the
medium permittivity is given by ε(x) = ε0eax , find the electric flux density,
D, and the volume charge density, ρv , in the region. (d) Find the stored
energy in the region (0 < x < d), (0 < y < 1), (0 < z < 1).

4.21 Let V = 2xy2z3 + 3 ln(x2 + 2y2 + 3z2) V in free space. Evaluate each of the
following quantities at P(3, 2, −1) (a) V ; (b) |V |; (c) E; (d) |E|; (e) aN ;
( f ) D.
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4.22 A line charge of infinite length lies along the z axis and carries a uniform
linear charge density of ρ	 C/m. A perfectly conducting cylindrical shell,
whose axis is the z axis, surrounds the line charge. The cylinder (of radius b),
is at ground potential. Under these conditions, the potential function inside
the cylinder (ρ < b) is given by

V (ρ) = k − ρ	

2πε0
ln(ρ)

where k is a constant. (a) Find k in terms of given or known parameters.
(b) Find the electric field strength, E, for ρ < b. (c) Find the electric field
strength, E, for ρ > b. (d) Find the stored energy in the electric field per unit
length in the z direction within the volume defined by ρ > a, where a < b.

4.23 It is known that the potential is given as V = 80ρ0.6 V. Assuming free space
conditions, find. (a) E; (b) the volume charge density at ρ = 0.5 m; (c) the
total charge lying within the closed surface ρ = 0.6, 0 < z < 1.

4.24 A certain spherically symmetric charge configuration in free space produces
an electric field given in spherical coordinates by

E(r ) =
{

(ρ0r2)/(100ε0) ar V/m (r ≤ 10)

(100ρ0)/(ε0r2) ar V/m (r ≥ 10)

where ρ0 is a constant. (a) Find the charge density as a function of position.
(b) Find the absolute potential as a function of position in the two regions,
r ≤ 10 and r ≥ 10. (c) Check your result of part b by using the gradient.
(d) Find the stored energy in the charge by an integral of the form of Eq. (43).
(e) Find the stored energy in the field by an integral of the form of Eq. (45).

4.25 Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 +
50ρ + 150ρ sin φV. (a) Find V, E, D, and ρν at P(1, 60◦, 0.5) in free space.
(b) How much charge lies within the cylinder?

4.26 Let us assume that we have a very thin, square, imperfectly conducting plate
2 m on a side, located in the plane z = 0 with one corner at the origin such
that it lies entirely within the first quadrant. The potential at any point in
the plate is given as V = −e−x sin y. (a) An electron enters the plate at
x = 0, y = π/3 with zero initial velocity; in what direction is its initial
movement? (b) Because of collisions with the particles in the plate, the
electron achieves a relatively low velocity and little acceleration (the work
that the field does on it is converted largely into heat). The electron therefore
moves approximately along a streamline. Where does it leave the plate and in
what direction is it moving at the time?

4.27 Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0, −0.1), are in free
space. (a) Calculate V at P(0.3, 0, 0.4). (b) Calculate |E| at P . (c) Now treat
the two charges as a dipole at the origin and find V at P.

4.28 Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find the
difference in potential between points at θa and θb, each point having the
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same r and φ coordinates. Under what conditions does the answer agree with
Eq. (33), for the potential at θa?

4.29 A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at
Q(1, 2, −4) in free space. Find V at P(2, 3, 4).

4.30 A dipole for which p = 10ε0az C · m is located at the origin. What is the
equation of the surface on which Ez = 0 but E �= 0?

4.31 A potential field in free space is expressed as V = 20/(xyz) V. (a) Find the
total energy stored within the cube 1 < x, y, z < 2. (b) What value would be
obtained by assuming a uniform energy density equal to the value at the
center of the cube?

4.32 (a) Using Eq. (35), find the energy stored in the dipole field in the region
r > a. (b) Why can we not let a approach zero as a limit?

4.33 A copper sphere of radius 4 cm carries a uniformly distributed total charge
of 5 µC in free space. (a) Use Gauss’s law to find D external to the sphere.
(b) Calculate the total energy stored in the electrostatic field. (c) Use WE =
Q2/(2C) to calculate the capacitance of the isolated sphere.

4.34 A sphere of radius a contains volume charge of uniform density ρ0 C/m3.
Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35 Four 0.8 nC point charges are located in free space at the corners of a square
4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 0.8 nC
charge is installed at the center of the square. Again find the total stored
energy.

4.36 Surface charge of uniform density ρs lies on a spherical shell of radius b,
centered at the origin in free space. (a) Find the absolute potential
everywhere, with zero reference at infinity. (b) Find the stored energy in the
sphere by considering the charge density and the potential in a
two-dimensional version of Eq. (42). (c) Find the stored energy in the electric
field and show that the results of parts (b) and (c) are identical.
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Conductors and
Dielectrics

I n this chapter, we apply the methods we have learned to some of the materials
with which an engineer must work. In the first part of the chapter, we consider
conducting materials by describing the parameters that relate current to an applied

electric field. This leads to a general definition of Ohm’s law. We then develop methods
of evaluating resistances of conductors in a few simple geometric forms. Conditions
that must be met at a conducting boundary are obtained next, and this knowledge
leads to a discussion of the method of images. The properties of semiconductors are
described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.
Such materials differ from conductors in that ideally, there is no free charge that can be
transported within them to produce conduction current. Instead, all charge is confined
to molecular or lattice sites by coulomb forces. An applied electric field has the effect
of displacing the charges slightly, leading to the formation of ensembles of electric
dipoles. The extent to which this occurs is measured by the relative permittivity, or
dielectric constant. Polarization of the medium may modify the electric field, whose
magnitude and direction may differ from the values it would have in a different
medium or in free space. Boundary conditions for the fields at interfaces between
dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive
properties; that is, a material considered a dielectric may be slightly conductive, and
a material that is mostly conductive may be slightly polarizable. These departures
from the ideal cases lead to some interesting behavior, particularly as to the effects
on electromagnetic wave propagation, as we will see later. ■
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5.1 CURRENT AND CURRENT DENSITY
Electric charges in motion constitute a current. The unit of current is the ampere (A),
defined as a rate of movement of charge passing a given reference point (or crossing
a given reference plane) of one coulomb per second. Current is symbolized by I , and
therefore

I = d Q

dt
(1)

Current is thus defined as the motion of positive charges, even though conduction in
metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather
than within a large region, and we find the concept of current density, measured in
amperes per square meter (A/m2), more useful. Current density is a vector1 represented
by J.

The increment of current �I crossing an incremental surface �S normal to the
current density is

�I = JN �S

and in the case where the current density is not perpendicular to the surface,

�I = J · �S

Total current is obtained by integrating,

I =
∫

S
J · dS (2)

Current density may be related to the velocity of volume charge density at a point.
Consider the element of charge �Q = ρν�ν = ρν �S �L , as shown in Figure 5.1a.
To simplify the explanation, assume that the charge element is oriented with its edges
parallel to the coordinate axes and that it has only an x component of velocity. In
the time interval �t , the element of charge has moved a distance �x , as indicated in
Figure 5.1b. We have therefore moved a charge �Q = ρν �S �x through a reference
plane perpendicular to the direction of motion in a time increment �t , and the resulting
current is

�I = �Q

�t
= ρν �S

�x

�t
As we take the limit with respect to time, we have

�I = ρν �S vx

1 Current is not a vector, for it is easy to visualize a problem in which a total current I in a conductor of
nonuniform cross section (such as a sphere) may have a different direction at each point of a given
cross section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to
the current.
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Figure 5.1 An increment of charge, �Q = ρν�S�L, which moves a distance �x in
a time �t, produces a component of current density in the limit of Jx = ρννx .

where νx represents the x component of the velocity v.2 In terms of current density,
we find

Jx = ρν νx

and in general

J = ρνv (3)

This last result shows clearly that charge in motion constitutes a current. We
call this type of current a convection current, and J or ρνv is the convection current
density. Note that the convection current density is related linearly to charge density
as well as to velocity. The mass rate of flow of cars (cars per square foot per second)
in the Holland Tunnel could be increased either by raising the density of cars per
cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10ρ2zaρ − 4ρ cos2 φ aφ mA/m2:
(a) find the current density at P(ρ = 3, φ = 30◦, z = 2); (b) determine the
total current flowing outward through the circular band ρ = 3, 0 < φ < 2π,
2 < z < 2.8.

Ans. 180aρ − 9aφ mA/m2; 3.26 A

5.2 CONTINUITY OF CURRENT
The introduction of the concept of current is logically followed by a discussion of the
conservation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase ν is used both for volume and velocity. Note, however, that velocity always appears as
a vector v, a component νx , or a magnitude |v|, whereas volume appears only in differential form as dν

or �ν.
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amounts of positive and negative charge may be simultaneously created, obtained by
separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region
bounded by a closed surface. The current through the closed surface is

I =
∮

S
J · dS

and this outward flow of positive charge must be balanced by a decrease of positive
charge (or perhaps an increase of negative charge) within the closed surface. If the
charge inside the closed surface is denoted by Qi , then the rate of decrease is −d Qi/dt
and the principle of conservation of charge requires

I =
∮

S
J · dS = −d Qi

dt
(4)

It might be well to answer here an often-asked question. “Isn’t there a sign error?
I thought I = dQ/dt .” The presence or absence of a negative sign depends on what
current and charge we consider. In circuit theory we usually associate the current flow
into one terminal of a capacitor with the time rate of increase of charge on that plate.
The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation; the differential, or
point, form is obtained by using the divergence theorem to change the surface integral
into a volume integral: ∮

S
J · dS =

∫

vol
(∇ · J) dv

We next represent the enclosed charge Qi by the volume integral of the charge density,∫

vol
(∇ · J) dv = − d

dt

∫

vol
ρν dv

If we agree to keep the surface constant, the derivative becomes a partial derivative
and may appear within the integral,∫

vol
(∇ · J) dv =

∫

vol
−∂ρν

∂t
dv

from which we have our point form of the continuity equation,

(∇ · J) = −∂ρν

∂t
(5)

Remembering the physical interpretation of divergence, this equation indicates
that the current, or charge per second, diverging from a small volume per unit volume
is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases
exponentially with time,

J = 1

r
e−t ar A/m2
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Selecting an instant of time t = 1 s, we may calculate the total outward current at
r = 5 m:

I = Jr S = (
1
5 e−1

)
(4π52) = 23.1 A

At the same instant, but for a slightly larger radius, r = 6 m, we have

I = Jr S = (
1
6 e−1

)(
4π62

) = 27.7 A

Thus, the total current is larger at r = 6 than it is at r = 5.

To see why this happens, we need to look at the volume charge density and the
velocity. We use the continuity equation first:

−∂ρν

∂t
= ∇ · J = ∇ ·

(
1

r
e−t ar

)
= 1

r2

∂

∂r

(
r2 1

r
e−t

)
= 1

r2
e−t

We next seek the volume charge density by integrating with respect to t . Because ρν

is given by a partial derivative with respect to time, the “constant” of integration may
be a function of r :

ρν = −
∫

1

r2
e−t dt + K(r ) = 1

r2
e−t + K(r )

If we assume that ρν → 0 as t → ∞, then K(r ) = 0, and

ρν = 1

r2
e−t C/m3

We may now use J = ρνv to find the velocity,

νr = Jr

ρν

=
1

r
e−t

1

r2
e−t

= r m/s

The velocity is greater at r = 6 than it is at r = 5, and we see that some (unspecified)
force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r , a charge
density that is inversely proportional to r2, and a velocity and total current that are
proportional to r . All quantities vary as e−t.

D5.2. Current density is given in cylindrical coordinates as J = −106z1.5az

A/m2 in the region 0 ≤ ρ ≤ 20 µm; for ρ ≥ 20 µm, J = 0. (a) Find the total
current crossing the surface z = 0.1 m in the az direction. (b) If the charge
velocity is 2 × 106 m/s at z = 0.1 m, find ρν there. (c) If the volume charge
density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Ans. −39.7 µA; −15.8 mC/m3; 29.0 m/s
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